Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 14(1): 3026, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-20242082

ABSTRACT

Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , Animals, Newborn , Ferrets , Disease Models, Animal , Mesocricetus
2.
Res Sq ; 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2320460

ABSTRACT

Background The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can infect the heart to kill cardiomyocytes and induce MACE in patients with severe COVID-19. Methods This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analyzed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. Results From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralize viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titers in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes of the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. Active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. Conclusion SARS-CoV-2 can reach the heart during severe COVID-19 and induce necroptosis in the heart of patients with MACE. Thus, pMLKL could be used as a biomarker of cardiac damage and a therapeutic target. Trial registration: Not applicable.

3.
Crit Care ; 27(1): 155, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2305739

ABSTRACT

BACKGROUND: The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can induce necrotic cell death to promote MACE in patients with severe COVID-19. METHODS: This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analysed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. RESULTS: From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralise viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titters in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes in the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. An active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. CONCLUSION: SARS-CoV-2 identification in the systemic circulation is associated with MACE and necroptosis activity. The increased pMLKL and Troponin-I indicated the occurrence of necroptosis in the heart and suggested necroptosis effectors could serve as biomarkers and/or therapeutic targets. Trial registration Not applicable.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Protein Kinases , Necroptosis , Prospective Studies , Troponin I , SARS-CoV-2 , Biomarkers/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases
4.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2017032

ABSTRACT

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , Viral Regulatory and Accessory Proteins , Virulence , COVID-19/virology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Regulatory and Accessory Proteins/genetics , Virulence/genetics , Virus Replication/genetics
5.
Sci Transl Med ; 14(634): eabn7842, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1723505

ABSTRACT

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that have mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. Although the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.1.529) spike protein appear to diminish the protection conferred by preexisting immunity. Using vesicular stomatitis virus (VSV) pseudoparticles expressing the spike protein of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in individuals after infection and in mRNA-vaccinated individuals. We observed that boosting increases the magnitude of the antibody response to wild-type (D614), Beta, Delta, and Omicron variants; however, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses, whereas responses may have been reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL